cover

This is animation with code #12

I was thinking that I will only recreate gifs made by other artists with code in gif2code project, but this work was inspired by still image

95ad06b91d1aae5ceb6a99a3e3ee95f8

The color palette is inspired by this beautiful game called Alto.

c04_rampcliff

The particle behaviour was inspired by this Three.js example.
So I forked the particle system and tame it to create a moon shape.

pshkvsky gif2code | 12

Code

The code is shared as it is, it was made late at night, so if something is confusing to you, just drop me a letter and I will make a refactoring for you.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
window.addEventListener("load", function () {
    var camera, tick = 0,
    scene, renderer, clock = new THREE.Clock(true),
    controls, container,
    options, spawnerOptions, particleSystem;

    init();
    animate();

    function init() {


        var _w=500;
        var _h=500;



        camera = new THREE.PerspectiveCamera(28, _w/_h, 1, 10000);
        camera.position.z = 100;

        scene = new THREE.Scene();

      // The GPU Particle system extends THREE.Object3D, and so you can use it
      // as you would any other scene graph component.  Particle positions will be
      // relative to the position of the particle system, but you will probably only need one
      // system for your whole scene
      particleSystem = new THREE.GPUParticleSystem({
        maxParticles: 250000
      });
       particleSystem.rotation.x=-0.72;
       particleSystem.rotation.y=8.98;
       particleSystem.rotation.z=1.10;
      scene.add( particleSystem);


      // options passed during each spawned
      options = {
        position: new THREE.Vector3(),
        positionRandomness: .13,
        velocity: new THREE.Vector3(),
        velocityRandomness: .33,
        color: 0xffffff,
        colorRandomness: .12,
        turbulence: .05,
        lifetime: 1.07,
        size: 1,
        sizeRandomness: 1.9,
        v_rad:15,
        h_rad:11
      };

      spawnerOptions = {
        spawnRate: 30000,
        horizontalSpeed: 5,
        verticalSpeed: 1.33,
        timeScale: 0.37
      }


      renderer = new THREE.WebGLRenderer();
      renderer.setPixelRatio(window.devicePixelRatio);
      renderer.setClearColor(new THREE.Color(0x181f27, 1.0));
      renderer.setSize(window.innerWidth, window.innerHeight);

      picture.style.display = 'none';
      document.body.appendChild( renderer.domElement );  

      window.addEventListener('resize', onWindowResize, false);

  }

  function onWindowResize() {

    camera.aspect =_w/ _h;
    camera.updateProjectionMatrix();

    renderer.setSize(_w/ _h);

  }

  function animate() {

    requestAnimationFrame(animate);

    var delta = clock.getDelta() * spawnerOptions.timeScale;
    tick += delta;

    if (tick < 0) tick = 0;
    if (delta > 0) {
        for (var x = 0; x < spawnerOptions.spawnRate * delta; x++) {
            particleSystem.spawnParticle(options,spawnerOptions.spawnRate * delta);
        }
    }

    particleSystem.update(tick);

    render();

  }

  function render() {

    renderer.render(scene, camera);

  }















  THREE.GPUParticleSystem = function(options) {

    var self = this;
    var options = options || {};

  // parse options and use defaults
  self.PARTICLE_COUNT = options.maxParticles || 1000000;
  self.PARTICLE_CONTAINERS = options.containerCount || 1;
  self.PARTICLES_PER_CONTAINER = Math.ceil(self.PARTICLE_COUNT / self.PARTICLE_CONTAINERS);
  self.PARTICLE_CURSOR = 0;
  self.time = 0;


  // Custom vertex and fragement shader
  var GPUParticleShader = {

    vertexShader: [

    'precision highp float;',
    'const vec4 bitSh = vec4(256. * 256. * 256., 256. * 256., 256., 1.);',
    'const vec4 bitMsk = vec4(0.,vec3(1./256.0));',
    'const vec4 bitShifts = vec4(1.) / bitSh;',

    '#define FLOAT_MAX  1.70141184e38',
    '#define FLOAT_MIN  1.17549435e-38',

    'lowp vec4 encode_float(highp float v) {',
    'highp float av = abs(v);',

    '//Handle special cases',
    'if(av < FLOAT_MIN) {',
    'return vec4(0.0, 0.0, 0.0, 0.0);',
    '} else if(v > FLOAT_MAX) {',
    'return vec4(127.0, 128.0, 0.0, 0.0) / 255.0;',
    '} else if(v < -FLOAT_MAX) {',
    'return vec4(255.0, 128.0, 0.0, 0.0) / 255.0;',
    '}',

    'highp vec4 c = vec4(0,0,0,0);',

    '//Compute exponent and mantissa',
    'highp float e = floor(log2(av));',
    'highp float m = av * pow(2.0, -e) - 1.0;',

      //Unpack mantissa
      'c[1] = floor(128.0 * m);',
      'm -= c[1] / 128.0;',
      'c[2] = floor(32768.0 * m);',
      'm -= c[2] / 32768.0;',
      'c[3] = floor(8388608.0 * m);',

      '//Unpack exponent',
      'highp float ebias = e + 127.0;',
      'c[0] = floor(ebias / 2.0);',
      'ebias -= c[0] * 2.0;',
      'c[1] += floor(ebias) * 128.0;',

      '//Unpack sign bit',
      'c[0] += 128.0 * step(0.0, -v);',

      '//Scale back to range',
      'return c / 255.0;',
      '}',

      'vec4 pack(const in float depth)',
      '{',
      'const vec4 bit_shift = vec4(256.0*256.0*256.0, 256.0*256.0, 256.0, 1.0);',
      'const vec4 bit_mask  = vec4(0.0, 1.0/256.0, 1.0/256.0, 1.0/256.0);',
      'vec4 res = fract(depth * bit_shift);',
      'res -= res.xxyz * bit_mask;',
      'return res;',
      '}',

      'float unpack(const in vec4 rgba_depth)',
      '{',
      'const vec4 bit_shift = vec4(1.0/(256.0*256.0*256.0), 1.0/(256.0*256.0), 1.0/256.0, 1.0);',
      'float depth = dot(rgba_depth, bit_shift);',
      'return depth;',
      '}',

      'uniform float uTime;',
      'uniform float uScale;',
      'uniform sampler2D tNoise;',

      'attribute vec4 particlePositionsStartTime;',
      'attribute vec4 particleVelColSizeLife;',

      'varying vec4 vColor;',
      'varying float lifeLeft;',

      'void main() {',

      '// unpack things from our attributes',
      'vColor = encode_float( particleVelColSizeLife.y );',
      'vColor= vec4(0.88,0.95,0.99,1.0);',

      '// convert our velocity back into a value we can use',
      'vec4 velTurb = encode_float( particleVelColSizeLife.x );',
      'vec3 velocity = vec3( velTurb.xyz );',
      'float turbulence = velTurb.w;',

      'vec3 newPosition;',

      'float timeElapsed = uTime - particlePositionsStartTime.a;',

      'lifeLeft = 1. - (timeElapsed / particleVelColSizeLife.w);',

      'gl_PointSize = ( uScale * particleVelColSizeLife.z ) * lifeLeft;',

      'velocity.x = ( velocity.x - .5 ) * 3.;',
      'velocity.y = ( velocity.y - .5 ) * 3.;',
      'velocity.z = ( velocity.z - .5 ) * 3.;',

      'newPosition = particlePositionsStartTime.xyz + ( velocity * 10. ) * ( uTime - particlePositionsStartTime.a );',

      'vec3 noise = texture2D( tNoise, vec2( newPosition.x * .015 + (uTime * .05), newPosition.y * .02 + (uTime * .015) )).rgb;',
      'vec3 noiseVel = ( noise.rgb - .5 ) * 30.;',

      'newPosition = mix(newPosition, newPosition + vec3(noiseVel * ( turbulence * 5. ) ), (timeElapsed / particleVelColSizeLife.a) );',

      'if( velocity.y > 0. && velocity.y < .05 ) {',
      'lifeLeft = 0.;',
      '}',

      'if( velocity.x < -1.45 ) {',
      'lifeLeft = 0.;',
      '}',

      'if( timeElapsed > 0. ) {',
      'gl_Position = projectionMatrix * modelViewMatrix * vec4( newPosition, 1.0 );',
      '} else {',
      'gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );',
      'lifeLeft = 0.;',
      'gl_PointSize = 0.;',
      '}',
      '}'

      ].join("\n"),

      fragmentShader: [

      'float scaleLinear(float value, vec2 valueDomain) {',
      'return (value - valueDomain.x) / (valueDomain.y - valueDomain.x);',
      '}',

      'float scaleLinear(float value, vec2 valueDomain, vec2 valueRange) {',
      'return mix(valueRange.x, valueRange.y, scaleLinear(value, valueDomain));',
      '}',

      'varying vec4 vColor;',
      'varying float lifeLeft;',

      'uniform sampler2D tSprite;',

      'void main() {',

      'float alpha = 0.;',

      'if( lifeLeft > .995 ) {',
      'alpha = scaleLinear( lifeLeft, vec2(1., .995), vec2(0., 1.));//mix( 0., 1., ( lifeLeft - .95 ) * 100. ) * .75;',
      '} else {',
      'alpha = lifeLeft * .75;',
      '}',

      'vec4 tex = texture2D( tSprite, gl_PointCoord );',


      'gl_FragColor = vec4( vColor.rgb, alpha * tex.a );',
      '}'

      ].join("\n")

  };

  // preload a million random numbers
  self.rand = [];

  for (var i = 1e5; i > 0; i--) {
    self.rand.push(Math.random() - .5);
  }

  self.random = function() {
    return ++i >= self.rand.length ? self.rand[i = 1] : self.rand[i];
  }

  self.particleNoiseTex;
   // = THREE.ImageUtils.loadTexture("textures/perlin-512.png");
  // self.particleNoiseTex.wrapS = self.particleNoiseTex.wrapT = THREE.RepeatWrapping;

  self.particleSpriteTex ;
  // = THREE.ImageUtils.loadTexture("textures/particle2.png");
  // self.particleSpriteTex.wrapS = self.particleSpriteTex.wrapT = THREE.RepeatWrapping;

  self.particleShaderMat = new THREE.ShaderMaterial({
    transparent: true,
    depthWrite: false,
    uniforms: {
        "uTime": {
            type: "f",
            value: 0.0
        },
        "uScale": {
            type: "f",
            value: 1.0
        },
        "tNoise": {
            type: "t",
            value: self.particleNoiseTex
        },
        "tSprite": {
            type: "t",
            value: self.particleSpriteTex
        }
    },
    blending: THREE.AdditiveBlending,
    vertexShader: GPUParticleShader.vertexShader,
    fragmentShader: GPUParticleShader.fragmentShader
  });

  // define defaults for all values
  self.particleShaderMat.defaultAttributeValues.particlePositionsStartTime = [0, 0, 0, 0];
  self.particleShaderMat.defaultAttributeValues.particleVelColSizeLife = [0, 0, 0, 0];

  self.particleContainers = [];


  // extend Object3D
  THREE.Object3D.apply(this, arguments);

  this.init = function() {

    for (var i = 0; i < self.PARTICLE_CONTAINERS; i++) {

        var c = new THREE.GPUParticleContainer(self.PARTICLES_PER_CONTAINER, self);
        self.particleContainers.push(c);
        self.add(c);

    }

  }

  this.spawnParticle = function(options) {

    self.PARTICLE_CURSOR++;
    if (self.PARTICLE_CURSOR >= self.PARTICLE_COUNT) {
        self.PARTICLE_CURSOR = 1;
    }

    var currentContainer = self.particleContainers[Math.floor(self.PARTICLE_CURSOR / self.PARTICLES_PER_CONTAINER)];

    currentContainer.spawnParticle(options);

  }

  this.update = function(time) {
    for (var i = 0; i < self.PARTICLE_CONTAINERS; i++) {

        self.particleContainers[i].update(time);

    }
  };

  this.init();

}

THREE.GPUParticleSystem.prototype = Object.create(THREE.Object3D.prototype);
THREE.GPUParticleSystem.prototype.constructor = THREE.GPUParticleSystem;


// Subclass for particle containers, allows for very large arrays to be spread out
THREE.GPUParticleContainer = function(maxParticles, particleSystem) {

    var self = this;
    self.PARTICLE_COUNT = maxParticles || 100000;
    self.PARTICLE_CURSOR = 0;
    self.time = 0;
    self.DPR = window.devicePixelRatio;
    self.GPUParticleSystem = particleSystem;

    var particlesPerArray = Math.floor(self.PARTICLE_COUNT / self.MAX_ATTRIBUTES);

  // extend Object3D
  THREE.Object3D.apply(this, arguments);

  // construct a couple small arrays used for packing variables into floats etc
  var UINT8_VIEW = new Uint8Array(4)
  var FLOAT_VIEW = new Float32Array(UINT8_VIEW.buffer)

  function decodeFloat(x, y, z, w) {
    UINT8_VIEW[0] = Math.floor(w)
    UINT8_VIEW[1] = Math.floor(z)
    UINT8_VIEW[2] = Math.floor(y)
    UINT8_VIEW[3] = Math.floor(x)
    return FLOAT_VIEW[0]
  }

  function componentToHex(c) {
    var hex = c.toString(16);
    return hex.length == 1 ? "0" + hex : hex;
  }

  function rgbToHex(r, g, b) {
    return "#" + componentToHex(r) + componentToHex(g) + componentToHex(b);
  }

  function hexToRgb(hex) {
    var r = hex >> 16;
    var g = (hex & 0x00FF00) >> 8;
    var b = hex & 0x0000FF;

    if (r > 0) r--;
    if (g > 0) g--;
    if (b > 0) b--;

    return [r, g, b];
  };

  self.particles = [];
  self.deadParticles = [];
  self.particlesAvailableSlot = [];

  // create a container for particles
  self.particleUpdate = false;

  // Shader Based Particle System
  self.particleShaderGeo = new THREE.BufferGeometry();

  // new hyper compressed attributes
  self.particleVertices = new Float32Array(self.PARTICLE_COUNT * 3); // position
  self.particlePositionsStartTime = new Float32Array(self.PARTICLE_COUNT * 4); // position
  self.particleVelColSizeLife = new Float32Array(self.PARTICLE_COUNT * 4);

  for (var i = 0; i < self.PARTICLE_COUNT; i++) {
    self.particlePositionsStartTime[i * 4 + 0] = 100; //x
    self.particlePositionsStartTime[i * 4 + 1] = 0; //y
    self.particlePositionsStartTime[i * 4 + 2] = 0.0; //z
    self.particlePositionsStartTime[i * 4 + 3] = 0.0; //startTime

    self.particleVertices[i * 3 + 0] = 0; //x
    self.particleVertices[i * 3 + 1] = 0; //y
    self.particleVertices[i * 3 + 2] = 0.0; //z

    self.particleVelColSizeLife[i * 4 + 0] = decodeFloat(128, 128, 0, 0); //vel
    self.particleVelColSizeLife[i * 4 + 1] = decodeFloat(254, 254, 254, 254); //color
    self.particleVelColSizeLife[i * 4 + 2] = 1.0; //size
    self.particleVelColSizeLife[i * 4 + 3] = 0.0; //lifespan
}

self.particleShaderGeo.addAttribute('position', new THREE.BufferAttribute(self.particleVertices, 3));
self.particleShaderGeo.addAttribute('particlePositionsStartTime', new THREE.BufferAttribute(self.particlePositionsStartTime, 4).setDynamic(true));
self.particleShaderGeo.addAttribute('particleVelColSizeLife', new THREE.BufferAttribute(self.particleVelColSizeLife, 4).setDynamic(true));

self.posStart = self.particleShaderGeo.getAttribute('particlePositionsStartTime')
self.velCol = self.particleShaderGeo.getAttribute('particleVelColSizeLife');

self.particleShaderMat = self.GPUParticleSystem.particleShaderMat;

this.init = function() {
    self.particleSystem = new THREE.Points(self.particleShaderGeo, self.particleShaderMat);
    self.particleSystem.frustumCulled = false;
    this.add(self.particleSystem);
};

var options = {},
position = new THREE.Vector3(),
velocity = new THREE.Vector3(),
positionRandomness = 0.,
velocityRandomness = 0.,
color = 0xffffff,
colorRandomness = 0.,
turbulence = 0.,
lifetime = 0.,
size = 0.,
sizeRandomness = 0.,
i;

var maxVel = 2;
var maxSource = 250;
this.offset = 0;
this.count = 0;

this.spawnParticle = function(options,total) {

    options = options || {};

    // setup reasonable default values for all arguments
    position = options.position !== undefined ? position.copy(options.position) : position.set(0., 0., 0.);
    velocity = options.velocity !== undefined ? velocity.copy(options.velocity) : velocity.set(0., 0., 0.);
    positionRandomness = options.positionRandomness !== undefined ? options.positionRandomness : 0.0;
    velocityRandomness = options.velocityRandomness !== undefined ? options.velocityRandomness : 0.0;
    color = options.color !== undefined ? options.color : 0xffffff;
    colorRandomness = options.colorRandomness !== undefined ? options.colorRandomness : 1.0;
    turbulence = options.turbulence !== undefined ? options.turbulence : 1.0;
    lifetime = options.lifetime !== undefined ? options.lifetime : 5.0;
    size = options.size !== undefined ? options.size : 10;
    sizeRandomness = options.sizeRandomness !== undefined ? options.sizeRandomness : 0.0,
    smoothPosition = options.smoothPosition !== undefined ? options.smoothPosition : false;

    if (self.DPR !== undefined) size *= self.DPR;

    i = self.PARTICLE_CURSOR;

    var r=10;
    var total=65;
    var angle=90*i/total * (Math.PI/180)




    var _x=Math.cos(angle)*options.v_rad;
    var _y=Math.sin(angle)*options.h_rad;
    if(_y<0)_y=-_y;

    if(_x>options.v_rad*0.95){
        turbulence=0.01;
    }
    if(_x<-options.v_rad*0.96){
        turbulence=0.01;
    }

    // var move_dir=1;
    //  if(_x>0)move_dir=0;

    //  velocity.x=move_dir*velocity.x;
    //  velocity.y=move_dir*velocity.x;
    //  velocity.z=move_dir*velocity.x;

    lifetime=_y/(r/2)*lifetime;

    self.posStart.array[i * 4 + 0] =_x+ position.x + ((particleSystem.random()) * positionRandomness); // - ( velocity.x * particleSystem.random() ); //x
    self.posStart.array[i * 4 + 1] =_y+ position.y + ((particleSystem.random()) * positionRandomness); // - ( velocity.y * particleSystem.random() ); //y
    self.posStart.array[i * 4 + 2] = position.z + ((particleSystem.random()) * positionRandomness); // - ( velocity.z * particleSystem.random() ); //z
    self.posStart.array[i * 4 + 3] = self.time + (particleSystem.random() * 2e-2); //startTime

    if (smoothPosition === true) {
      self.posStart.array[i * 4 + 0] += -(velocity.x * particleSystem.random()); //x
      self.posStart.array[i * 4 + 1] += -(velocity.y * particleSystem.random()); //y
      self.posStart.array[i * 4 + 2] += -(velocity.z * particleSystem.random()); //z
  }

  var velX = velocity.x + (particleSystem.random()) * velocityRandomness;
  var velY = velocity.y + (particleSystem.random()) * velocityRandomness;
  var velZ = velocity.z + (particleSystem.random()) * velocityRandomness;

    // convert turbulence rating to something we can pack into a vec4
    var turbulence = Math.floor(turbulence * 254);

    // clamp our value to between 0. and 1.
    velX = Math.floor(maxSource * ((velX - -maxVel) / (maxVel - -maxVel)));
    velY = Math.floor(maxSource * ((velY - -maxVel) / (maxVel - -maxVel)));
    velZ = Math.floor(maxSource * ((velZ - -maxVel) / (maxVel - -maxVel)));


    self.velCol.array[i * 4 + 0] = decodeFloat(velX, velY, velZ, turbulence); //vel

    // var rgb = hexToRgb(color);
    var rgb=[226,243,253];

    for (var c = 0; c < rgb.length; c++) {
        rgb[c] = Math.floor(rgb[c] + ((particleSystem.random()) * colorRandomness) * 254);
        if (rgb[c] > 254) rgb[c] = 254;
        if (rgb[c] < 0) rgb[c] = 0;
    }

    self.velCol.array[i * 4 + 1] = decodeFloat(256,254,254, 254); //color
    self.velCol.array[i * 4 + 2] = size + (particleSystem.random()) * sizeRandomness; //size
    self.velCol.array[i * 4 + 3] = lifetime; //lifespan

    if (this.offset == 0) {
        this.offset = self.PARTICLE_CURSOR;
    }

    self.count++;

    self.PARTICLE_CURSOR++;

    if (self.PARTICLE_CURSOR >= self.PARTICLE_COUNT) {
        self.PARTICLE_CURSOR = 0;
    }

    self.particleUpdate = true;

}

this.update = function(time) {

    self.time = time;
    self.particleShaderMat.uniforms['uTime'].value = time;

    this.geometryUpdate();

};

this.geometryUpdate = function() {
    if (self.particleUpdate == true) {
        self.particleUpdate = false;

      // if we can get away with a partial buffer update, do so
      if (self.offset + self.count < self.PARTICLE_COUNT) {
        self.posStart.updateRange.offset = self.velCol.updateRange.offset = self.offset * 4;
        self.posStart.updateRange.count = self.velCol.updateRange.count = self.count * 4;
      } else {
        self.posStart.updateRange.offset = 0;
        self.posStart.updateRange.count = self.velCol.updateRange.count = (self.PARTICLE_COUNT * 4);
      }

      self.posStart.needsUpdate = true;
      self.velCol.needsUpdate = true;

      self.offset = 0;
      self.count = 0;
  }
}

this.init();

}

THREE.GPUParticleContainer.prototype = Object.create(THREE.Object3D.prototype);
THREE.GPUParticleContainer.prototype.constructor = THREE.GPUParticleContainer;


});